资讯 人工智能开发者
此为临时链接,仅用于文章预览,将在时失效

数据太多而无法使用?快试试这个kaggle大数据集高效访问教程 | 雷峰网-米乐m6平台

作者:ai研习社-译站
2020/12/17 16:51

译者:ai研习社()

双语原文链接:


大规模数据集


对数据科学家和kaggler来说,数据永远不嫌多。

我敢肯定,你在解决某些问题时,一定报怨过没有足够的数据,但偶尔也会抱怨数据量太多难以处理。本文探讨的问题就是对超大规模数据集的处理。

在数据过多的情况下,最常见的米乐m6平台的解决方案是根据ram采样适量数据,但这却浪费了未使用的数据,甚至可能导致信息缺失问题。针对这些问题,研究人员提出多种不同的非子采样方法。需要注意的时,某一方法是无法解决所有问题的,因此在不同情况下要根据具体需求选择恰当的米乐m6平台的解决方案。

本文将对一些相关技术进行描述和总结。由于数据集由10列,超1亿行的数据组成,在kaggle notebook中使用pd.read_csv方法读取会导致内存不足,因此本文将该数据集做为典型示例。

不同安装包读取数据的方式有所不同,notebook中可用方法包括(默认为pandas,按字母表排序):

除了从csv文件读取数据外,还可以将数据集转换为占有更少磁盘空间、更少内存、读取速度快的其他格式。notebook可处理的文件类型包括(默认csv,按字母表排序):

请注意,在实际操作中不单单是读取数据这么简单,还要同时考虑数据的下游任务和应用流程,综合衡量以确定读取方法。本文对此不做过多介绍,读者可自行查阅相关资料。

同时,你还会发现,对于不同数据集或不同环境,最有效的方法往往是不同的,也就是所,没有哪一种方法就是万能的。

后续会陆续添加新的数据读取方法。

我们首先使用notebook默认的pandas方法,如前文所述,这样的读取因内存不足失败。

import pandas as pd
import dask.dataframe as dd

# confirming the default pandas doesn't work (running thebelow code should result in a memory error)
# data = pd.read_csv("../input/riiid-test-answer-prediction/train.csv")

pandas介绍


是最常用的数据集读取方法,也是kaggle的默认方法。pandas功能丰富、使用灵活,可以很好的读取和处理数据。

使用pandas读取大型数据集的挑战之一是其保守性,同时推断数据集列的数据类型会导致pandas dataframe占用大量非必要内存。因此,在数据读取时,可以基于先验知识或样品检查预定义列数据的最佳数据类型,避免内存损耗。

riiid竞赛官方提供的数据集读取方法就是如此。

帮助文档: 

%%time
dtypes = {
   "row_id": "int64",
   "timestamp": "int64",
   "user_id": "int32",
   "content_id": "int16",
   "content_type_id": "boolean",
   "task_container_id": "int16",
   "user_answer": "int8",
   "answered_correctly": "int8",
   "prior_question_elapsed_time": "float32",
   "prior_question_had_explanation": "boolean"}
data = pd.read_csv("../input/riiid-test-answer-prediction/train.csv", dtype=dtypes)
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 8min 11s, sys: 10.8 s, total: 8min 22s
wall time: 8min 22s
data.head()


dask介绍


dask提供并行处理框架对pandas工作流进行扩展,其与spark具有诸多相似之处。

帮助文档:

%%time
dtypes = {
   "row_id": "int64",
   "timestamp": "int64",
   "user_id": "int32",
   "content_id": "int16",
   "content_type_id": "boolean",
   "task_container_id": "int16",
   "user_answer": "int8",
   "answered_correctly": "int8",
   "prior_question_elapsed_time": "float32",
   "prior_question_had_explanation": "boolean"}
data = dd.read_csv("../input/riiid-test-answer-prediction/train.csv", dtype=dtypes).compute()
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 9min 24s, sys: 28.8 s, total: 9min 52s

wall time: 7min 41s

data.head()




datatable介绍


受r语言data.table的启发,python中提出,该包可快速读取大型数据集,一般要比pandas快得多。值得注意的是,该包专门用于处理表格数据集,能够快速读取大规模的表格数据集。

帮助文档:

# datatable installation with internet
# !pip install datatable==0.11.0 > /dev/null

# datatable installation without internet!
pip install ../input/python-datatable/datatable-0.11.0-cp37-cp37m-manylinux2010_x86_64.whl > /dev/null

import datatable as dt
%%time
data = dt.fread("../input/riiid-test-answer-prediction/train.csv")
print("train size:", data.shape)train size: (101230332, 10)
cpu times: user 52.5 s, sys: 18.4 s, total: 1min 10s
wall time: 20.5 sdata.head()



10*10

rapids介绍


提供了在gpu上处理数据的方法。通过将机器学习模型转移到gpu,rapids可以在一个或多个gpu上构建端到端的数据米乐m6平台的解决方案。

帮助文档:

# rapids installation (make sure to turn on gpu)
import sys
!cp ../input/rapids/rapids.0.15.0 /opt/conda/envs/rapids.tar.gz
!cd /opt/conda/envs/ && tar -xzvf rapids.tar.gz > /dev/null
sys.path = ["/opt/conda/envs/rapids/lib/python3.7/site-packages"] sys.path
sys.path = ["/opt/conda/envs/rapids/lib/python3.7"] sys.path
sys.path = ["/opt/conda/envs/rapids/lib"] sys.path

import cudf
%%time
data = cudf.read_csv("../input/riiid-test-answer-prediction/train.csv")
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 4.58 s, sys: 3.31 s, total: 7.89 s

wall time: 30.7 s

data.head()



通常,我们会将数据集存储为容易读取、读取速度快或存储容量较小的格式。数据集存储有各种不同的格式,但不是每一种都可以被处理,因此接下来,我们将介绍如何将这些数据集转换为不同的格式。

# data = dt.fread("../input/riiid-test-answer-prediction/train.csv").to_pandas()

# writing dataset as csv
# data.to_csv("riiid_train.csv", index=false)

# writing dataset as hdf5
# data.to_hdf("riiid_train.h5", "riiid_train")

# writing dataset as feather
# data.to_feather("riiid_train.feather")

# writing dataset as parquet
# data.to_parquet("riiid_train.parquet")

# writing dataset as pickle
# data.to_pickle("riiid_train.pkl.gzip")

# writing dataset as jay
# dt.frame(data).to_jay("riiid_train.jay")

数据集的所有格式可从获取,不包括竞赛组提供的原始csv数据。

csv格式

大多数kaggle数据集都提供了csv格式文件。该格式几乎成为数据集的标准格式,而且所有方法都支持从csv读取数据。

更多相关信息见: 

%%time
dtypes = {
   "row_id": "int64",
   "timestamp": "int64",
   "user_id": "int32",
   "content_id": "int16",
   "content_type_id": "boolean",
   "task_container_id": "int16",
   "user_answer": "int8",
   "answered_correctly": "int8",
   "prior_question_elapsed_time": "float32",
   "prior_question_had_explanation": "boolean"}
data = pd.read_csv("../input/riiid-test-answer-prediction/train.csv", dtype=dtypes)
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 8min 36s, sys: 11.3 s, total: 8min 48s
wall time: 8min 49s

feather格式

以feature(二进制)格式存储数据对于pandas极其友好,该格式提供了更快的读取速度。

了解更多信息:

%%time
data = pd.read_feather("../input/riiid-train-data-multiple-formats/riiid_train.feather")
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 2.59 s, sys: 8.91 s, total: 11.5 s
wall time: 5.19 s

hdf5格式

hdf5是用于存储、管理和处理大规模数据和复杂数据的高性能数据管理组件。

了解更多信息:

%%time
data = pd.read_hdf("../input/riiid-train-data-multiple-formats/riiid_train.h5", "riiid_train")
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 8.16 s, sys: 10.7 s, total: 18.9 s
wall time: 19.8 s

jay格式

datatable支持.jay(二进制)格式,其在读取jay格式数据时速度快得超乎想象。从下面的示例可以看到,该方法读取整个riiid数据集用时甚至不到1秒!

了解更多信息:

%%time
data = dt.fread("../input/riiid-train-data-multiple-formats/riiid_train.jay")
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 4.88 ms, sys: 7.35 ms, total: 12.2 ms
wall time: 38 ms

parquet格式

在hadoop生态系统中,parquet是tabular的主要文件格式,同时还支持spark。经过近年的发展,该数据格式更加成熟,高效易用,pandas目前也支持了该数据格式。

%%time
data = pd.read_parquet("../input/riiid-train-data-multiple-formats/riiid_train.parquet")
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 29.9 s, sys: 20.5 s, total: 50.4 s
wall time: 27.3 s

pickle格式

python对象可以以pickle格式存储,pandas内置支持pickle对象的读取和写入。

了解更多信息:

%%time
data = pd.read_pickle("../input/riiid-train-data-multiple-formats/riiid_train.pkl.gzip")
print("train size:", data.shape)
train size: (101230332, 10)
cpu times: user 5.65 s, sys: 7.08 s, total: 12.7 s
wall time: 15 s


每种方法都有自己的优缺点,例如:

因此,希望读者掌握不同的方法,并根据实际需求选择最恰当的方法。我始终相信,研究不是技术驱动的,技术方法只是手段,要有好主意、新想法、改进技术才能推动数据科学的研究与发展。

在经过大量研究后,我确信不同数据集具有不同的适用方法,因此要多尝试,千万不要试图一招半式闯江湖。

在不断更新的开源软件包和活跃的社区支持下,数据科学必将持续蓬勃发展。


ai研习社是ai学术青年和ai开发者技术交流的在线社区。我们与高校、学术机构和产业界合作,通过提供学习、实战和求职服务,为ai学术青年和开发者的交流互助和职业发展打造一站式平台,致力成为中国最大的科技创新人才聚集地。

如果,你也是位热爱分享的ai爱好者。欢迎与一起,学习新知,分享成长。

长按图片保存图片,分享给好友或朋友圈

数据太多而无法使用?快试试这个kaggle大数据集高效访问教程

扫码查看文章
米乐m6平台

正在生成分享图...

取消
相关文章
网站地图